Capsule Networks for Hyperspectral Image Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Convolutional Neural Networks for Hyperspectral Image Classification

Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the classification of common two-dimensional images. In this paper, deep convolutional neural networks are employed to classify hyperspectral images directly in spectral domain. More specifically, the architecture of the proposed classifier contains five layers with weights which a...

متن کامل

Hyperspectral Image Classification

Article history: Received 12 October 2014 Received in revised form 26 December 2014 Accepted 1 January 2015 Available online 25 February 2015

متن کامل

Hyperspectral Image Classification for Mineralogical Identification

Classification is broadly used in a range of exploration technologies. This paper will summarize standard classification methods and provide a new hybrid method for classifying spectra used in mapping mineralogy with hyperspectral remote sensing data. Classification methods commonly employed do not allow the user specifically to identify key features that give confidence as to the quality of th...

متن کامل

Spectral-Spatial Response for Hyperspectral Image Classification

This paper presents a hierarchical deep framework called Spectral-Spatial Response (SSR) to jointly learn spectral and spatial features of Hyperspectral Images (HSIs) by iteratively abstracting neighboring regions. SSR forms a deep architecture and is able to learn discriminative spectral-spatial features of the input HSI at different scales. It includes several existing spectral-spatial-based ...

متن کامل

Active Learning for Hyperspectral Image Classification

Obtaining labeled data for supervised classification of remotely sensed imagery is expensive and time consuming. Further, manual selection of the training set is often subjective and tends to induce redundancy into the supervised classifier, thus considerably slowing the training phase. Active learning (AL) integrates data acquisition with the classifier design by ranking the unlabeled data to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing

سال: 2019

ISSN: 0196-2892,1558-0644

DOI: 10.1109/tgrs.2018.2871782